Efficient Testbench Architectures for SoC Designs using
SystemC and SystemVerilog

Ashutosh Godbole Ingo Kuehn
Infineon Technologies AG AMD Saxony LLC & Co. KG
Munich, Germany Dresden, Germany
ashutosh.godbole@infineon.com ingo.kuehn@amd.com

Thomas Berndt
AMD Saxony LLC & Co. KG
Dresden, Germany
thomas.berndt@amd.com

ABSTRACT

When designs get bigger and more complex, the high level verification languages like SystemC,
e, or SystemVerilog are needed to accomplish the verification task of SoC designs. An open
source language like SystemC along with its verification extension (SCV) provides high level
constructs and data types, randomization features, and object oriented paradigm, which are
needed to thoroughly verify RTL designs. But the price paid is long simulation times due to the
co-simulation bottle-neck.

This paper proposes a mixed-language testbench architecture based on SystemC and
SystemVerilog, which is a significant improvement over conventional HVL verification
environment. It presents a real world example where the approach was deployed to improve
performance of an existing PLI-based SystemC-Verilog co-simulation. It makes use of Synopsys
VCS features like SystemVerilog - DPI (Direct Programming Interface) and Transaction Level
Interface (TLI) to raise the SystemC-Verilog co-simulation interface to a higher level of
abstraction (transaction level). This dramatically increases the overall simulation speed as the
data between the two language domains are exchanged in terms of transactions instead of
signals.

Furthermore, the proposed mixed-language verification environment also improves the overall
verification methodology by reusing low level verification components developed in
SystemVerilog or simple Verilog. This helps to reduce the valuable time and effort spent on
verification.

Table of Contents

1.0 INTRODUGCTION ...ttt ettt et e e sttt e s e b et e e s sab e e e s sabbeeseabeeeessbbesesssbesessasbassesabeneesssbeneaas 4
2.0 SYSTEMC AND SYSTEMVERILOG: HIGH LEVEL VERIFICATION LANGUAGES.ccccee.. 4
2.1 SOC VERIFICATION L.uttttiiieieiiiitittiesseessesbatesssesssassbsbasesasssaabtbasssaessssaba b aaasaessssasbbeaseasesssbbbbbaeesesssasbbebaessesssassbnrns 4
2.2 N L =LY [RO RRRTRRTN 4
2.3 R L =Y A/ =11 o T 5
2.4 Yo =] = WY = = N = T T 5
3.0 THE CO-SIMULATION BOTTLENECKooiii ittt ettt ettt stta e st s s s sbba e s s svaae s s srban e 6
3.1 A TYPICAL TESTBENCH ARCHITECTURE FOR A BRIDGE DESIGN....uuviiiiiiiiiiiiiiiieieesiiibtsiessesssssssssssesessssssssrssssssssens 6
3.2 A VERILOG PLI-BASED SYSTEMC-VERILOG CO-SIMULATION INTERFACE ...uvvveiieiiiiiiiiieeeeessiirsieseeeessessssrenssesssnns 6
3.3 EXEC PATH EXAMPLE ...vetiiiuveee e ettt e eettee e e etteeeesettesssestessssabseaesbbeesaassessesabeeeesebbeeeaassessesasesessbbeeesassensssnreneesssrenenas 7
3.4 [I OV =TT o JR U 8
4.0 IMPROVING SIMULATION PERFORMANCE ...ttt et st 8
41 F N B =YX = o I U 1 [0 PO 8
4.2 THE DP I APPROACH ..ttttiiti it sttt ettt e s sttt e e e s s e s bbb e e s e e e e e s bbb e be e e e e e s sb b bbb e e e e e s s saabbbbaeesesssasbbabaeeseessassbares 9
4.3 IMPLEMENTATION DETALLS .. eiutitieiitteeesitteeeestteeesesaeeessssesessssasseaasssssssssesesasssessaasesssssssesesasssesesasensesssbenesssseesesnses 9
431 Modified teSTDENCN AICHITECTUIEcicveii ettt ettt e e s e e s ettt e e s st a e s sebaeeesstbeeesaaes 10
4.3.2 How to connect SystemVerilog module instance with SystemC/C++ 0bject?.........c.cccoeveiiiiiciennne 11
4.3.3 Reuse of low level Verilog BEMS/MONITOISccvcviiiiieieieie e ste e siseaeseesie e ste e sveste e esseaessesaesnens 14
4.3.4 Implementation ChalIENQESc..oieie e e e 15
435 IMplementation USING VCS-TLI ..ot 16

5.0 COMPARISON RESULT S .. ettt ettt e e e s st e e e s e bbb e s s sb b e e s s sbb e e s sastaesesabeeeessbbeneaas 17
51 EFFECT OF DIFFERENT SIMULATION RUN LENGTHSuutttiiieieiiiiitiiiiesessssisssiisssesssesistbasssessssssssbsssssssssssssssssnssas 17
511 Average CPU time (in sec) Vs Number of transactions...........c.ccvcviveiveiieieiene s 17
512 Percentage speed increase over PLI-based co-Simulation...........ccocvvviveiveicicvcse s 18

6.0 (O(0] \\ [0 I] [0\ RO 19
7.0 ACKNOWNLEDGEMENTS .ottt ettt e sttt s e e s sa e e e s ettt e e s saba e e s s bt e e s sabbasessabaeesssbaeessbansssabenas 20
8.0 REFERENCGCES ...ttt ettt e e e ettt e e e et e e s s bt e e s s ebbe e e saabee e s sabaeessabbesessaassssabanessbbasesanes 21
SNUG Europe 2007 2 Efficient Testbench Architectures for SoC

Designs Using SystemC and SystemVerilog

Table of Figures

Figure 3.1 Testbench structure for a bridge designcccoovieiieii e 6
FIQUIE 3.2 DUT DIOCK ... ittt sraenbeeneenres 7
FIgUre 3.3 The EXEC PAN....coeieeeee e et nreas 8
Figure 4.1 Transaction level interface between SystemC and SystemVerilog...........cccccevevvninnne 9
Figure 4.2 Modified testbench architeCtUrecoooveiieiieii e 10
Figure 4.3 Connection of SV module instance with SC module.............ccccovevviiiiiiiiciciccees 11
Figure 4.4 Reuse of low level Verilog BFM tasks ..o 14
Figure 4.5 VCS-TLI usage model (SV €alling SC)cceiiiiiiiiiiiiieiecee e 17
Figure 5.1 Graph of Average CPU time (in sec) Vs Number of transactionsccccceveennens 18
Figure 5.2 Percentage speed increase over PLI-based co-simulation............c.ccccccveveiieiienieenns 19
SNUG Europe 2007 3 Efficient Testbench Architectures for SoC

Designs Using SystemC and SystemVerilog

1.0 Introduction

The verification environment to verify System-On-Chip designs developed at AMD, Dresden
was modeled in SystemC, while Verilog was used for RTL design. This may be a common
structure found in many companies. The co-simulation of SystemC environment and Verilog
design was achieved using a portable and tool independent Verilog-PLI based co-simulation
interface. This co-simulation interface was responsible for synchronizing the SystemC and
Verilog simulators and exchanging data between the two language domains. Due to the PLI
overhead, the simulations took quite a long time. The goal of this paper is to propose a mixed
language testbench architecture that improved this SystemC-HDL co-simulation performance.

Next section of this paper will discuss the use of high level verification languages in
contemporary functional verification. Section 3.0 will explain the co-simulation bottleneck
which occurs in SystemC-HDL simulations. The proposed testbench architecture will be the
main focus of section 4.0. The section ‘Comparison Results’ will demonstrate with the help of a
real world example, the performance gain achieved by this testbench architecture.

2.0 SystemC and SystemVerilog: High Level Verification Languages
2.1 SoC verification

A key issue in SoC design is integration of silicon IPs (cores). Integration of IPs directly affects
the complexity of SoC designs and also influences verification of the SoC. SoC verification
becomes more complex because of the many different kinds of IPs on the chip. A verification
plan must cover the verification of the individual cores as well as that of the overall SoC.
Various SoC applications require unique external interface constraints, and the verification team
should consider those constraints early on.

The verification of these multi-million gate SoCs is a daunting task. Clearly, hardware
description languages like VHDL/Verilog are inadequate for verifying these complex designs
within the available time frame. Hence the need for high-level verification languages! High level
verification languages like e, SystemC (in conjunction with SCV), and SystemVerilog come with
the complete arsenal necessary for verification of huge designs. These HVLs are equipped with
following features, which make them effective for verification:

e Object oriented paradigm and modularity

e High level programming language features such as complex data types
e Transaction based verification

e Support for constrained random generation

2.2 SystemC

While standard SystemC can be used to perform basic verification of a design, the SystemC
verification standard (SCV) improves its capability by providing features for transaction based
verification, constrained and weighted randomization, exception handling and other verification
tasks. SystemC is a flexible, object oriented architectural modeling language designed for
modeling multiple abstraction levels, including TLM. SystemC is implemented as a C++ library
that incorporates concurrency and notion of time in the traditional C++ framework.

SNUG Europe 2007 4 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

Pure SystemC may be insufficient to verify complex designs, but the SystemC Verification
library (SCV), which can be treated as the SystemC verification extension makes SystemC an
excellent hardware verification language (HVL). It includes all the features for modern
verification, such as transaction based verification approach, data introspection, constrained and
weighted randomization for stimulus generation, etc.

2.3 SystemVerilog

SystemVerilog is a rather new language built upon the Verilog language and is useful for both
hardware design and verification. SystemVerilog extends Verilog into the systems space and the
verification space. It adds extended and new constructs to Verilog-2001 for a higher level of
abstraction for modeling and verification. The language enhancements provide more concise
constructs for hardware description, while still providing an easy route with existing tools into
current hardware implementation flows. The enhancements also provide extensive support for
directed and constrained-random testbench development, coverage driven verification, and
assertion based verification.

2.4 Race between the two

Engineers with a software background often prefer C/C++ or SystemC as the TLM language,
while other engineers coming from a hardware design background may prefer SystemVerilog for
verification. SystemC extends the C++ scope towards hardware, while SystemVerilog extends
the Verilog scope to object orientation and testbenches. Both languages support concepts such as
signals, events, and interfaces and object oriented methodology.

SystemVerilog is built on the top of Verilog. Verilog simulators like VCS provide integrated
support for SystemVerilog. No separate simulator is required. Hence there is no co-simulation
overhead. This is the particular feature that could be exploited to improve simulation
performance. This paper describes how the verification environment can be built using both
SystemC and SystemVerilog. It demonstrates how we can gain from both the languages by
making a proper language choice for a given abstraction level within the testbench architecture.

Both the languages have some great features that are extremely useful in verification and both
have some drawbacks. It can not be proclaimed that one language is better than the other for all
purposes. The ultimate goal is to increase verification productivity and reduce the valuable time
spent in verification. This calls for a shift in overall methodology and the testbench architecture.
In this paper, we also demonstrate how low level verification components can be reused and how
simulation speeds can be increased by mixing SystemC and SystemVerilog for developing
verification environments.

The design decision of choosing SystemC or SystemVerilog is seldom made from scratch. The
decisions are often based upon the existing testbench infrastructure and verification IP that is
already available. It is not feasible to discard the existing verification infrastructure developed in
SystemC completely, and then redevelop everything in SystemVerilog. This was the scenario at
AMD, Dresden. The verification infrastructure in SystemC was already available. The
simulation performance had to be improved without discarding this legacy SystemC verification

SNUG Europe 2007 5 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

IP and at the same time, by making use of SystemVerilog’s close binding with the VCS
simulator kernel.

3.0 The Co-simulation Bottleneck
3.1 A typical testbench architecture for a bridge design

Figure 3.1 shows a legacy testbench architecture used for a typical bridge design. For other
DUTSs this architecture can be adapted (e.g. for some co-processors, only one side of the
testbench exists). The DUT is in Verilog and the components of verification environment are
described in SystemC. This testbench architecture will be used as a case study throughout this

paper.

Host Bus A Peripheral Bus B

Check MON |¢
Converter [A

MON Check
B ™ Converter

A 4

A
A

DUT

»

—> Response [®| BFM BFM [®| Response |¢—
Converter (¢ A B | Converter

b ; : i

Tv

A

Response Exec Exec Response
Generator Converter Converter Generator
Simulation 4T
Testcase
R Trans P
| Checker [

MON: Bus Monitor
BFM: Bus Functional Model

Figure 3.1 Testbench structure for a bridge design

3.2 A Verilog PLI-based SystemC-Verilog co-simulation interface

This section describes the legacy co-simulation framework used at AMD, Dresden. Co-
simulation of the Verilog design and SystemC verification environment is carried out using a
Verilog-PLI based co-simulation interface. This co-simulation interface is responsible for
synchronizing the SystemC and Verilog simulators and exchanging data between the two
language domains. Due to the PLI overhead, the simulations take quite a long time.

SNUG Europe 2007 6 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

3.3 Exec path example

To delve deeper into the problem, let us consider the host transaction execution path (exec path).
The host bus is AMD GeodeLink. On the device side we have LPC (Low Pin Count) bus. Figure
3.2 shows the DUT as a black box:

Host bus: Device bus:
GeodeLink LPC

A

DUT

Figure 3.2 DUT block

The DUT acts as a bridge and converts the host bus transactions into LPC transactions. In the
test case “lpc_traffic_tc”, read/write transactions are applied on the host bus and LPC
transactions are received on the LPC interface. The exec path refers to the testbench components,
which are involved in generation and execution of the host transactions. Figure 3.3 shows the
“exec” path:

The transaction flow through the exec path:

e The test case is the upper-most layer and it applies constraints to the transaction
generator.

e The transaction generator then generates interface unspecific transactions obeying the
imposed constraints. These transactions are called host transactions. The host
transactions are then handed over to the exec converter.

e The exec converter translates the incoming request host transactions into interface
specific transactions; GeodeLink transactions in this case.

e Finally the GeodeLink BFM receives transactions from the exec converter and converts
those into relevant Verilog signaling on the interface. It is the only time consuming unit
in the whole chain. Thus the BFM receives transactions and applies to the physical
interface on the other side by spreading them in time.

SNUG Europe 2007 7 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

Test case

Constraints

A 4
Generator

Host
A 4 transactions

Exec converter

GeodeLink
\ 4 transactions
SystemC GeodeLink BFM
.. Pl ooeooeeeessesn, Verilog PLI based Co-
v v simulation interface
Verilog DUT
Figure 3.3 The exec path

3.4 PLI overhead

It can be seen in the figure 3.3 that the interface between Verilog and SystemC is below the
GeodeLink BFM: at signal level. The event driven, PLI based co-simulation interface is
responsible for the data exchange between SystemC and Verilog. Any PLI application is
inherently slow and hence it significantly affects the co-simulation performance. More the bus
activity more is the required SystemC-Verilog data exchange resulting into slow overall
simulation.

4.0 Improving Simulation Performance
4.1 A DKI based solution

One of the solutions to the slow SystemC-Verilog co-simulation problem is to replace the
existing PLI-based co-simulation interface with a co-simulation interface which does not have
any PLI overhead. Synopsys VCS-Direct Kernel Interface (DKI) is such a signal level co-
simulation interface between SystemC and Verilog. It is a high bandwidth solution, which boosts
the simulation performance by reducing the PLI overhead. The extra protective PLI layer is
removed and there is more direct interaction with the simulator’s internal data structures; this
results in high speed SystemC-HDL data exchange. Furthermore, as the VCS built-in SystemC
simulator is used with DKI, the simulators are more tightly integrated. This also helps to
improve the co-simulation performance to some extent.

Although DKI has a clear advantage over traditional PLI based co-simulation, it is still an
optimization at signal level. The implementation details of co-simulation with DKI will not be

SNUG Europe 2007 8 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

discussed in this paper, as the main focus of this paper is to go beyond the signal level co-
simulation. The DKI approach is only included for comparing the approaches.

4.2 The DPI approach

Another solution to the slow SystemC-Verilog co-simulation problem is to raise the interface
itself between SystemC and Verilog to a higher level of abstraction: from signal level to
transaction level. When the interface is moved from signal level to transaction level, the co-
simulation overhead will be reduced because the slower signal level SystemC-Verilog data
exchange will get replaced by a faster transaction level data exchange.

Exec

SystemC Converter

_ Transaction level
SystemVerilog C) Interface (DPI based)

) Abstraction level
GeodeLink BFM raised
A A .
] Signal level
< > Interface (PLI/DKI based)
vV o
DUT

Figure 4.1 Transaction level interface between SystemC and SystemVerilog

4.3 Implementation details

To achieve this, the existing SystemC bus functional models (BFMs) and bus monitors were
ported to SystemVerilog. These BFMs and monitors were connected to the higher layers of the
verification environment using the SystemVerilog Direct Programming Interface (DPI). The
transaction level data exchange between SystemC and SystemVerilog would take place through
the SystemVerilog’s direct programming interface (DPI). The other advantages of this approach
are:

e The SystemVerilog components developed for simple low level testbenches and test
cases could be reused.

SNUG Europe 2007 9 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

e BFMs and monitors developed in SystemVerilog would be easier to debug for RTL
designers.

e With this approach, the generators and checkers could be independently developed using
higher level languages like SystemC / C++ while low level verification IP like BFMs and
monitors could be developed in SystemVerilog / Verilog.

e As SystemVerilog integrates seamlessly into Verilog, the SystemVerilog — BFMs could
be developed first and provide a primitive interface for directed stimulus. The random
stimulus could be added later via SystemC. Work is not done twice as the BFMs are
reused for the SystemC / C++ testbench.

4.3.1 Modified testbench architecture

Figure 4.2 shows the modified testbench architecture after implementing the BFMs and monitors
in SystemVerilog. The architecture is partitioned in such a way that all the time consuming part
is implemented in SystemVerilog, while all the non time consuming part is retained in SystemC.

Host Bus A Peripheral Bus B
Check MON | > < » MON Check
Converter [A buT B ™ Converter
—> Response [P BFM > BFM [®| Response |¢—
Converter ¢ A [¢ (| B 4 Converter
' i i B
Response Exec Exec Response
Generator Converter Converter Generator
Simulation
Testcase
R Trans B
| Checker [

MON: Bus Monitor
BFM: Bus Functional Model

[]
[]
[]

SystemVerilog
SystemC

Verilog

Figure 4.2 Modified testbench architecture

SNUG Europe 2007 10 Efficient Testbench Architectures for SoC

Designs Using SystemC and SystemVerilog

4.3.2 How to connect SystemVerilog module instance with SystemC/C++ object?

The SystemVerilog standard currently supports only C programming language as a foreign
language layer. In principle, any foreign programming language with a C function protocol and
linking model can be interfaced with SystemVerilog using DPI. Using DPI, SystemVerilog side
can call C functions, but it does not have any knowledge of an elaborated SystemC module.
Hence an extra layer was implemented which would connect a particular SystemVerilog module
and a SystemC module.

SystemVerilog SV-SC connector SystemC object
module layer >
SystemVerilog SystemC
DPI

Figure 4.3 Connection of SV module instance with SC module

Figure 4.3 above shows this connecting layer between a SystemVerilog module and a SystemC
module. This layer has a global C++ function, with an extern “C” directive. By default, all
function types, function names, and variable names have a C++ language linkage. The extern
"C" linkage specifier prevents the C++ compiler from mangling the name of a function and the
function behaves as a normal C function. Such a function which follows C linkage mechanism
can then be called from SystemVerilog side via DPI.

This C++ function without any name mangling would be called from a SystemVerilog module,
which does not know anything about a SystemC/C++ object. This wrapper function would then
retrieve a SystemC object from a static table of the corresponding class. Finally, the member
function of the SystemC module (C++ object) would be called. This mechanism can be best
understood with the help of an example. Consider an example of interfacing LPC monitor
implemented in SystemVerilog with a checker implemented in SystemC/C++.

SNUG Europe 2007 11 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

The following code snippet shows imported DPI function declaration in LPC SystemVerilog
module:

program sr_Ipc_mon_sv(

lad,
iclk,
Idrg_n,
Iframe_n,
Ireset _n,
serirq);

“include "lpc_trans_sv.v"

// lInputs

input [3:0] lad;
input Iclk;
input Idrg_n;
input Iframe_n;
input Ireset_n;
input serirq;

// send transaction to the checker via DPI
import "DPI'" context function void Ipc_send_to_checker

(input int unsigned cmd_dpi, input int unsigned aspace_dpi,
input int unsigned addr_dpi, input int unsigned data_dpi,
input int unsigned sync_dpi, input int unsigned scnt_dpi,
input int unsigned seq_num_dpi, input int unsigned trans_type dpi,
input int unsigned size_dpi, input iInt unsigned start_stop_dpi

);

The LPC transaction is then dispatched to the checker for checking. The SystemVerilog side
calls the function “lpc_send_to_checker” from the SV-SC connecting layer. The SV-SC
connector then forwards this call to the appropriate method of a checker object. The checker
module is retrieved from a static table implemented in C++. On construction, the checker object
has to be registered with this static table.

SNUG Europe 2007 12 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

// required for DPI
#include "svdpi.h"

// function visible to SV Ipc-mon

extern "C" void

Ipc_send_to _checker(unsigned int cmd _dpi, unsigned int aspace_dpi,
unsigned int addr_dpi, unsigned int data dpi,
unsigned iInt sync_dpi, unsigned int scnt_dpi,
unsigned iInt seq_num_dpi, unsigned int trans_type_dpi,
unsigned iInt size dpi, unsigned int start_stop_dpi

) A{

// Local Ipc transaction
Ipc_trans It_local;

// Local checker
checker* checker_m;

// Prepare transaction for the checker

It _local.set originator(originator::create("lpc_mon'™));
It _local.set_initial_delay(0);

It _local.set_cmd(sr::cmd_t(cmd_dpi));

It _local .set_addr_space(sr::addr_space_t(aspace_dpi));
It local.set _dma(false);

It local.set_addr(addr_dpi);

It _local .set_data(data_dpi);

It _local .set_sync(lpc::sync_t(sync_dpi));

It _local.set_sync _cnt(scnt_dpi);

It _local.set_sequence_num(seq_num _dpi);

It_local .set_tkind(trans::tkind_t(trans_type_dpi));
It_local.set_size(lpc::size_t(size_dpi));

It local.set _start_stop(lpc::start_stop_t(start_stop_dpi));

// retrieve the checker object from the static table
checker_m = checker::get_checker_object(""CHECKER1™);
sr_assertm(checker_m, "Checker must be set!');

// send transaction to the checker
checker_m->check(<_local);

Above code snippets explain how to connect a SystemVerilog module instance with a SystemC
module (C++ object). In similar fashion, connections are made on the host bus side.

SNUG Europe 2007 13 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

4.3.3 Reuse of low level Verilog BFMs/Monitors

Apart from simulation speed improvement, the other advantages of developing BFMs and
monitors in SystemVerilog are:

(1) The low level verification IP like BFMs and monitors developed in Verilog for simple
block level test cases could be reused.

(2) As SystemVerilog integrates seamlessly into Verilog, the SystemVerilog — BFMs could
be developed first and provide a primitive interface for directed stimulus. The random
stimulus could be added later via SystemC. Work is not done twice as the BFMs are
reused for the SystemC / C++ testbench.

While porting SystemC BFMs to SystemVerilog, this reuse philosophy was utilized. Low level
Verilog tasks for driving the host bus were available. The SystemVerilog host bus BFM was
developed on top of these tasks, thus reusing the tasks. All the transactions received from
SystemC side are first queued in the SystemVerilog host bus BFM. Then the main polling thread
calls an appropriate low level task to apply the transaction over the host bus. The queue
decouples the time consuming part of the BFM from the DPI interface. Hence the DPI calls on
the SystemC side (exec interface) are simple non-blocking function calls. No special
synchronization of simulators is required. Figure 4.4 explains the interfacing of SystemVerilog
BFM and the higher layers of SystemC verification environment.

SC wrapper

function (exec > ™ DUT
interface) <

Queue Polling thread /
DPI SV BFM Low-leve] Hostbus
Verilog tasks
Figure 4.4 Reuse of low level Verilog BFM tasks
SNUG Europe 2007 14 Efficient Testbench Architectures for SoC

Designs Using SystemC and SystemVerilog

The following code snippet demonstrates this low level Verilog BFM reuse:

// Transaction polling thread
initial begin
while(1l) begin
@ (posedge mb_clk or mb_reset);
if (mb_reset) begin
end
else begin
if (GeodeLink_trans_queue.size() !'= 0) begin

// get the next transaction from the queue
mt_curr = GeodelLink_trans_queue.pop_front();

mb_asmi = mt_curr.get_asmi();
mb_err = mt_curr.get _mb_error();

// call appropriate low level task to execute the transaction
case (mt_curr.get _rqgst_type())
mb_coh_read: begin
mem_read(mt_curr.get_rgst_type(), mt_curr.get _rqgst_ad(),
mt_curr.get _rqgst_sz());
end
mb_non_coh_read: begin
mem_read(mt_curr.get_rgst_type(), mt_curr.get _rqgst_ad(),
mt_curr.get _rqgst_sz());
end

endcase
end // if (GeodeLink_trans_queue.size() !'= 0)
end // else: Tif(nb_reset)
end // while (1)
end // initial begin

4.3.4 Implementation challenges

The low level Verilog BFMs can not be directly reused without any modifications due to
following reasons:

(1) Verilog features like “assign’ statements, always blocks, modules are not allowed within
SystemVerilog program blocks.

(2) SystemVerilog high level language features like classes, associative arrays and queues
are allowed only within program blocks.

Another major implementation challenge faced is - Synopsys support for various SystemVerilog
features. Not all SystemVerilog language features were supported by Synopsys VCS at the time
of implementing this example. For example, features like operator overloading, associative array
with user defined type keys, passing of unpacked structures through DPI, etc. were not

SNUG Europe 2007 15 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

supported. This made the porting of SystemC BFMs and monitors to SystemVerilog difficult.
With some workarounds, these problems could be overcome.

4.3.5 Implementation using VCS-TLI

For the sake of completeness, above concept was also implemented using the latest feature of
Synopsys VCS called as VCS-TLI (Transaction Level Interface between SystemVerilog and
SystemC). But since TLI is built on the top of DPI, the simulation performance achieved using
TLI was same as in DPI approach. In our case, DPI was more attractive because being a part of
SystemVerilog standard it provided more portability and tool independence. Moreover, VCS-
TLI was not officially released at the time of implementing this example. This section gives a
brief introduction of VCS-TLI.

VCS-TLI is built on the top of DPI. It hides the DPI from the user and makes things easier for
the user who wants to connect SystemVerilog and SystemC modules at transaction level. Some
of the manual work, which was described in the previous chapter, is reduced by using VCS-TLI
feature. It acts as a wrapper for DPI and automatically generates SystemC and SystemVerilog
source codes for the TLI adapters.

TLI enables the user to:

e Call interface methods of SystemC interfaces from SystemVerilog
e Call tasks or functions of SystemVerilog interfaces from SystemC

Methods/tasks can be blocking as well as non-blocking. Blocking implies that the call may not
return immediately. The caller's execution is resumed exactly at the simulation time when the
callee returns, so a blocking call consumes the same amount of time in both simulator domains.
Non-blocking calls always return immediately. VCS-TLI also helps in synchronizing the two
simulators in case of blocking calls, which is not possible with DPI. But for simple non-blocking
function calls between the two language domains, DPI should suffice.

The use model of the transaction level interface consists of defining the interface by means of an
interface definition file, calling a code generator to create the TLI adapters for each domain, and
finally instantiation and binding of the adapters.

Figure 4.5 illustrates how the VCS-TLI works for the case of *‘SystemVerilog calling SystemC
interface functions’. It hides the DPI from user and uses it as an underlying mechanism for data
transfer between the two language domains. The automatically generated wrappers/adapters
forward call to SystemC interface method and take care of synchronization between SystemC
and SystemVerilog.

SNUG Europe 2007 16 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

SystemVerilog SystemVerilog SystemC TLI SystemC SystemC
module calling j TLI adapter adapter interface module
SystemC function - j implementing
DPI the function
SystemVerilog SystemC

Figure 4.5 VCS-TLI usage model (SV calling SC)

5.0 Comparison Results:
5.1 Effect of different simulation run lengths

In this section, the approaches are compared for different simulation run lengths. The transaction
count starts at 10 and then it is increased from 50 to 1600, doubling the number of transactions in
every simulation. The UNIX/Linux ‘time’ command is used for measuring CPU time. The
simulation times (CPU time) are noted for all the approaches and the trends are plotted as
follows:

5.1.1 Average CPU time (in sec) Vs Number of transactions

Transaction
Count | 414 50 100 200 400 800 1600
Approaches
PLI Cosim 6.43 10.39 15.42 24.20 43.09 80.48 161.83
DKI 4,97 8.38 12.92 20.38 36.82 68.95 140.05
DPI 5.52 7.92 10.98 15.81 27.37 49.89 101.03

SNUG Europe 2007

Table 5.1 Average CPU time (in sec) Vs Number of transactions

17

Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

Average CPU time Vs Number of transactions

—e— PLI Cosim —a— DKI| —a— DPI

Average CPU time (sec)
[0}
o

10 50 100 200 400 800 1600

Number of transactions

Figure 5.1 Graph of Average CPU time (in sec) Vs Number of transactions

In the above graph, it can be seen that the time required for co-simulations using the DKI and
DPI is always less than the PLI based co-simulation, even if the transaction count is increased.
This justifies the advantage of DKI and DPI based co-simulation strategies.

From the above data, the relative performance improvement of DPI approach can be analyzed by
calculating the percentage speed increase of the approaches over PLI based co-simulation.

5.1.2 Percentage speed increase over PLI-based co-simulation

Transaction
Count | 19 50 100 200 400 800 1600
Approaches
DPI 15.21% | 31.81% | 41.00% | 53.63% | 56.26% | 57.53% | 58.16%
Table 5.2 Percentage speed increase over PLI-based co-simulation
SNUG Europe 2007 18 Efficient Testbench Architectures for SoC

Designs Using SystemC and SystemVerilog

% Speed increase over PLI-based cosimulation

70,00%

60,00% -

s

§ 50,00% /
o
S 40,00% /
B 30,00%
o
@ 0,
$ 20,00%

10,00% -

0,00%

10 50 100 200 400 800 1600

Number of transactions

Figure 5.2 Percentage speed increase over PLI-based co-simulation

From the above graph, it can be observed that the relative speed improvement stabilizes roughly
after 200 transactions. The percentage speed improvement over PLI-based co-simulation is fairly
constant after this point. The changing nature of the curves during the ‘zoomed-in’ initial phase
can be attributed to the initialization activities taking place during the co-simulation program
execution, e.g. loading of runtime libraries.

6.0 Conclusions

The main objective of this paper was to present an efficient testbench architecture, which
improves simulation performance. To justify the concepts, the approaches were tried out on real
world SoC design blocks. The results achieved illustrate how this test bench architecture
significantly improves co-simulation performance and the overall verification productivity.

In order to verify huge and complex System-On-Chip designs within the available timeframe, we
need a high level verification language like SystemC. But verification of a Verilog design with a
SystemC environment comes with an inherent problem of slow co-simulation. The legacy
SystemC-Verilog co-simulation interface at AMD was Verilog PLI based which slowed down
the overall simulation speed. This paper presented the ways to circumvent this problem.

The first probable solution presented was to replace the PLI-based co-simulation interface with
an interface, which does not have any PLI overhead. The VCS Direct Kernel Interface (DKI) — a
SystemC-HDL co-simulation interface from Synopsys Inc. could be the solution.

SNUG Europe 2007 19 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

The second approach was to raise the interface between SystemC and SystemVerilog to a higher
abstraction level. By adopting this approach, overall simulation speed increases because the
slower signal level SystemC-Verilog data exchange gets replaced by a faster transaction level
data exchange. To prove this concept, the existing SystemC BFMs and monitors were first
ported to SystemVerilog, which were then connected with the upper layers of existing SystemC
verification environment by SystemVerilog Direct Programming Interface (DPI). It was also
shown how low level verification components could be reused, which is another step towards
methodology improvement.

The paper also introduced the new Synopsys VCS feature called Transaction Level Interface
(TLI). The TLI is built on the top of DPI and essentially hides the DPI from the user. The
advantage it provides over DPI is - some reduction of manual effort. It automatically generates
the adapters required for connecting a SystemVerilog module instance with a SystemC module.

Finally, all the approaches were compared on the basis of simulation time gain for different
simulation run lengths. The decision to choose any approach is governed by several factors.
There is an apparent tradeoff between performance and development effort. Legacy testbench
structure and the overall existing flow also play a major role in making this informed decision.

To sum up, this paper demonstrated how we could gain from SystemC as well as SystemVerilog
by making a proper language choice for a given abstraction level within the test bench
architecture. Embracing just one language or technology may not be very beneficial. An
integrated environment leveraging the advantages of both SystemC and SystemVerilog can be
more effective.

7.0 Acknowledgements

I express my sincere gratitude to my mentors Ingo Kuehn and Thomas Berndt for their valuable
advice, guidance and time. | especially thank Ingo Kuehn for reviewing my thesis and
encouraging me whenever | faced any mental block. | also enjoyed all the technical discussions
we had pertaining to my thesis.

I would also like to thank Matthias Leonhardt, Manager Design Verification, for giving me the
opportunity and resources to carry out my thesis work at AMD, Dresden.

I am thankful to Frank Winkler and Dirk Huthmann from AMD, Dresden for all the technical
help they provided during the course of my thesis. | take this opportunity to thank Ulrich
Holtmann, Angshuman Saha and Dinh Kim Bui of Synopsys, Inc. for their support in solving
some Synopsys tool related issues.

SNUG Europe 2007 20 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

8.0 References

[1] SystemVerilog 3.1a Language Reference Manual

[2] Sauber SystemC Verification Environment documentation (AMD internal documentation)

[3] Synopsys VCS/VCSi User Guide, Ver X-2005.06-SP1, Ver Y-2006.06

[4] SystemC 2.0.1 Language Reference Manual, Rev 1.0

[5] Rindert Schutten, Janick Bergeron (Synopsys, Inc.), Transaction-Level Modeling: SystemC
and/or SystemVerilog, Synopsys Verification Avenue Technical Bulletin, Vol. 6, Issue 1,
March 2006

[6] Stuart Sutherland (Sutherland HDL, Inc.), Integrating SystemC Models with Verilog and
SystemVerilog Models Using the SystemVerilog Direct Programming Interface, SNUG
Europe 2004

[7] Ulrich Holtmann (Synopsys, Inc.), Transaction Level Modeling: Integrated SystemC —
SystemVerilog environment, SNUG Europe 2006

SNUG Europe 2007 21 Efficient Testbench Architectures for SoC
Designs Using SystemC and SystemVerilog

