
 

  

 
 

Efficient Testbench Architectures for SoC Designs using 
SystemC and SystemVerilog 

 
 
 

 
 

        Ashutosh Godbole                                               Ingo Kuehn 
     Infineon Technologies AG                                     AMD Saxony LLC & Co. KG 
           Munich, Germany                                                      Dresden, Germany 
ashutosh.godbole@infineon.com                                       ingo.kuehn@amd.com        

 
 

Thomas Berndt 
AMD Saxony LLC & Co. KG 

Dresden, Germany 
thomas.berndt@amd.com 

 
 
 
 

ABSTRACT 
 
When designs get bigger and more complex, the high level verification languages like SystemC, 
e, or SystemVerilog are needed to accomplish the verification task of SoC designs. An open 
source language like SystemC along with its verification extension (SCV) provides high level 
constructs and data types, randomization features, and object oriented paradigm, which are 
needed to thoroughly verify RTL designs. But the price paid is long simulation times due to the 
co-simulation bottle-neck. 
 
This paper proposes a mixed-language testbench architecture based on SystemC and 
SystemVerilog, which is a significant improvement over conventional HVL verification 
environment. It presents a real world example where the approach was deployed to improve 
performance of an existing PLI-based SystemC-Verilog co-simulation. It makes use of Synopsys 
VCS features like SystemVerilog - DPI (Direct Programming Interface) and Transaction Level 
Interface (TLI) to raise the SystemC-Verilog co-simulation interface to a higher level of 
abstraction (transaction level). This dramatically increases the overall simulation speed as the 
data between the two language domains are exchanged in terms of transactions instead of 
signals. 
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Furthermore, the proposed mixed-language verification environment also improves the overall 
verification methodology by reusing low level verification components developed in 
SystemVerilog or simple Verilog. This helps to reduce the valuable time and effort spent on 
verification.  
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1.0 Introduction  
The verification environment to verify System-On-Chip designs developed at AMD, Dresden 
was modeled in SystemC, while Verilog was used for RTL design. This may be a common 
structure found in many companies. The co-simulation of SystemC environment and Verilog 
design was achieved using a portable and tool independent Verilog-PLI based co-simulation 
interface. This co-simulation interface was responsible for synchronizing the SystemC and 
Verilog simulators and exchanging data between the two language domains. Due to the PLI 
overhead, the simulations took quite a long time. The goal of this paper is to propose a mixed 
language testbench architecture that improved this SystemC-HDL co-simulation performance. 
 
Next section of this paper will discuss the use of high level verification languages in 
contemporary functional verification. Section 3.0 will explain the co-simulation bottleneck 
which occurs in SystemC-HDL simulations. The proposed testbench architecture will be the 
main focus of section 4.0. The section ‘Comparison Results’ will demonstrate with the help of a 
real world example, the performance gain achieved by this testbench architecture. 

 
2.0 SystemC and SystemVerilog: High Level Verification Languages  
2.1 SoC verification 

A key issue in SoC design is integration of silicon IPs (cores). Integration of IPs directly affects 
the complexity of SoC designs and also influences verification of the SoC. SoC verification 
becomes more complex because of the many different kinds of IPs on the chip. A verification 
plan must cover the verification of the individual cores as well as that of the overall SoC. 
Various SoC applications require unique external interface constraints, and the verification team 
should consider those constraints early on. 
 
The verification of these multi-million gate SoCs is a daunting task. Clearly, hardware 
description languages like VHDL/Verilog are inadequate for verifying these complex designs 
within the available time frame. Hence the need for high-level verification languages! High level 
verification languages like e, SystemC (in conjunction with SCV), and SystemVerilog come with 
the complete arsenal necessary for verification of huge designs. These HVLs are equipped with 
following features, which make them effective for verification: 
 

• Object oriented paradigm and modularity 
• High level programming language features such as complex data types 
• Transaction based verification 
• Support for constrained random generation 

 
2.2 SystemC 

While standard SystemC can be used to perform basic verification of a design, the SystemC 
verification standard (SCV) improves its capability by providing features for transaction based 
verification, constrained and weighted randomization, exception handling and other verification 
tasks. SystemC is a flexible, object oriented architectural modeling language designed for 
modeling multiple abstraction levels, including TLM. SystemC is implemented as a C++ library 
that incorporates concurrency and notion of time in the traditional C++ framework.  
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Pure SystemC may be insufficient to verify complex designs, but the SystemC Verification 
library (SCV), which can be treated as the SystemC verification extension makes SystemC an 
excellent hardware verification language (HVL). It includes all the features for modern 
verification, such as transaction based verification approach, data introspection, constrained and 
weighted randomization for stimulus generation, etc. 
 
2.3 SystemVerilog 

SystemVerilog is a rather new language built upon the Verilog language and is useful for both 
hardware design and verification. SystemVerilog extends Verilog into the systems space and the 
verification space. It adds extended and new constructs to Verilog-2001 for a higher level of 
abstraction for modeling and verification. The language enhancements provide more concise 
constructs for hardware description, while still providing an easy route with existing tools into 
current hardware implementation flows. The enhancements also provide extensive support for 
directed and constrained-random testbench development, coverage driven verification, and 
assertion based verification. 
 
2.4 Race between the two 

Engineers with a software background often prefer C/C++ or SystemC as the TLM language, 
while other engineers coming from a hardware design background may prefer SystemVerilog for 
verification. SystemC extends the C++ scope towards hardware, while SystemVerilog extends 
the Verilog scope to object orientation and testbenches. Both languages support concepts such as 
signals, events, and interfaces and object oriented methodology.  
 
SystemVerilog is built on the top of Verilog. Verilog simulators like VCS provide integrated 
support for SystemVerilog. No separate simulator is required. Hence there is no co-simulation 
overhead. This is the particular feature that could be exploited to improve simulation 
performance. This paper describes how the verification environment can be built using both 
SystemC and SystemVerilog. It demonstrates how we can gain from both the languages by 
making a proper language choice for a given abstraction level within the testbench architecture. 
 
Both the languages have some great features that are extremely useful in verification and both 
have some drawbacks. It can not be proclaimed that one language is better than the other for all 
purposes. The ultimate goal is to increase verification productivity and reduce the valuable time 
spent in verification. This calls for a shift in overall methodology and the testbench architecture. 
In this paper, we also demonstrate how low level verification components can be reused and how 
simulation speeds can be increased by mixing SystemC and SystemVerilog for developing 
verification environments. 
 
The design decision of choosing SystemC or SystemVerilog is seldom made from scratch. The 
decisions are often based upon the existing testbench infrastructure and verification IP that is 
already available. It is not feasible to discard the existing verification infrastructure developed in 
SystemC completely, and then redevelop everything in SystemVerilog. This was the scenario at 
AMD, Dresden. The verification infrastructure in SystemC was already available. The 
simulation performance had to be improved without discarding this legacy SystemC verification 
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IP and at the same time, by making use of SystemVerilog’s close binding with the VCS 
simulator kernel. 
 
3.0 The Co-simulation Bottleneck 
3.1 A typical testbench architecture for a bridge design 

Figure 3.1 shows a legacy testbench architecture used for a typical bridge design. For other 
DUTs this architecture can be adapted (e.g. for some co-processors, only one side of the 
testbench exists). The DUT is in Verilog and the components of verification environment are 
described in SystemC. This testbench architecture will be used as a case study throughout this 
paper. 
 
 

 
Figure 3.1 Testbench structure for a bridge design 

  
3.2 A Verilog PLI-based SystemC-Verilog co-simulation interface 

This section describes the legacy co-simulation framework used at AMD, Dresden. Co-
simulation of the Verilog design and SystemC verification environment is carried out using a 
Verilog-PLI based co-simulation interface. This co-simulation interface is responsible for 
synchronizing the SystemC and Verilog simulators and exchanging data between the two 
language domains. Due to the PLI overhead, the simulations take quite a long time. 
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3.3 Exec path example 

To delve deeper into the problem, let us consider the host transaction execution path (exec path). 
The host bus is AMD GeodeLink. On the device side we have LPC (Low Pin Count) bus. Figure 
3.2 shows the DUT as a black box: 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 DUT block 

 
The DUT acts as a bridge and converts the host bus transactions into LPC transactions. In the 
test case “lpc_traffic_tc”, read/write transactions are applied on the host bus and LPC 
transactions are received on the LPC interface. The exec path refers to the testbench components, 
which are involved in generation and execution of the host transactions. Figure 3.3 shows the 
“exec” path: 
 
The transaction flow through the exec path: 
 

• The test case is the upper-most layer and it applies constraints to the transaction 
generator.  

• The transaction generator then generates interface unspecific transactions obeying the 
imposed constraints. These transactions are called host transactions. The host 
transactions are then handed over to the exec converter.  

• The exec converter translates the incoming request host transactions into interface 
specific transactions; GeodeLink transactions in this case. 

• Finally the GeodeLink BFM receives transactions from the exec converter and converts 
those into relevant Verilog signaling on the interface. It is the only time consuming unit 
in the whole chain. Thus the BFM receives transactions and applies to the physical 
interface on the other side by spreading them in time. 
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Figure 3.3 The exec path 

 
3.4 PLI overhead 

It can be seen in the figure 3.3 that the interface between Verilog and SystemC is below the 
GeodeLink BFM: at signal level. The event driven, PLI based co-simulation interface is 
responsible for the data exchange between SystemC and Verilog. Any PLI application is 
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simulation. 
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4.1 A DKI based solution 

One of the solutions to the slow SystemC-Verilog co-simulation problem is to replace the 
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removed and there is more direct interaction with the simulator’s internal data structures; this 
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discussed in this paper, as the main focus of this paper is to go beyond the signal level co-
simulation. The DKI approach is only included for comparing the approaches. 
 
4.2 The DPI approach 

Another solution to the slow SystemC-Verilog co-simulation problem is to raise the interface 
itself between SystemC and Verilog to a higher level of abstraction: from signal level to 
transaction level. When the interface is moved from signal level to transaction level, the co-
simulation overhead will be reduced because the slower signal level SystemC-Verilog data 
exchange will get replaced by a faster transaction level data exchange.  
 
       

 
 
 

Figure 4.1 Transaction level interface between SystemC and SystemVerilog 

 
4.3 Implementation details 

To achieve this, the existing SystemC bus functional models (BFMs) and bus monitors were 
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• BFMs and monitors developed in SystemVerilog would be easier to debug for RTL 
designers.  

• With this approach, the generators and checkers could be independently developed using 
higher level languages like SystemC / C++ while low level verification IP like BFMs and 
monitors could be developed in SystemVerilog / Verilog. 

• As SystemVerilog integrates seamlessly into Verilog, the SystemVerilog – BFMs could 
be developed first and provide a primitive interface for directed stimulus. The random 
stimulus could be added later via SystemC. Work is not done twice as the BFMs are 
reused for the SystemC / C++ testbench. 

 
4.3.1 Modified testbench architecture 

Figure 4.2 shows the modified testbench architecture after implementing the BFMs and monitors 
in SystemVerilog. The architecture is partitioned in such a way that all the time consuming part 
is implemented in SystemVerilog, while all the non time consuming part is retained in SystemC. 
 

 
Figure 4.2 Modified testbench architecture 
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4.3.2 How to connect SystemVerilog module instance with SystemC/C++ object? 

The SystemVerilog standard currently supports only C programming language as a foreign 
language layer. In principle, any foreign programming language with a C function protocol and 
linking model can be interfaced with SystemVerilog using DPI. Using DPI, SystemVerilog side 
can call C functions, but it does not have any knowledge of an elaborated SystemC module. 
Hence an extra layer was implemented which would connect a particular SystemVerilog module 
and a SystemC module. 
 

 
 

Figure 4.3 Connection of SV module instance with SC module 

 
Figure 4.3 above shows this connecting layer between a SystemVerilog module and a SystemC 
module. This layer has a global C++ function, with an extern “C” directive. By default, all 
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function behaves as a normal C function. Such a function which follows C linkage mechanism 
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function of the SystemC module (C++ object) would be called. This mechanism can be best 
understood with the help of an example. Consider an example of interfacing LPC monitor 
implemented in SystemVerilog with a checker implemented in SystemC/C++. 
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program sr_lpc_mon_sv( 
 
  lad, 
  lclk, 
  ldrq_n, 
  lframe_n, 
  lreset_n, 
  serirq); 
 
  `include "lpc_trans_sv.v" 
 
  // Inputs 
  input [3:0]      lad; 
  input            lclk; 
  input            ldrq_n; 
  input            lframe_n; 
  input            lreset_n; 
  input            serirq; 
 
  // send transaction to the checker via DPI 
  import "DPI" context function void lpc_send_to_checker 
  (input int unsigned cmd_dpi,     input int unsigned aspace_dpi, 
   input int unsigned addr_dpi,    input int unsigned data_dpi, 
   input int unsigned sync_dpi,    input int unsigned scnt_dpi, 
   input int unsigned seq_num_dpi, input int unsigned trans_type_dpi, 
   input int unsigned size_dpi,    input int unsigned start_stop_dpi  
  ); 
  . . . 
  . . .           

The following code snippet shows imported DPI function declaration in LPC SystemVerilog 
module: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The LPC transaction is then dispatched to the checker for checking. The SystemVerilog side 
calls the function “lpc_send_to_checker” from the SV-SC connecting layer. The SV-SC 
connector then forwards this call to the appropriate method of a checker object. The checker 
module is retrieved from a static table implemented in C++. On construction, the checker object 
has to be registered with this static table.  
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. . . 

. . .  
 
// required for DPI 
#include "svdpi.h" 
 
// function visible to SV lpc-mon 
extern "C" void  
lpc_send_to_checker(unsigned int cmd_dpi,  unsigned int aspace_dpi, 
                    unsigned int addr_dpi, unsigned int data_dpi, 
                    unsigned int sync_dpi, unsigned int scnt_dpi, 
                    unsigned int seq_num_dpi, unsigned int trans_type_dpi,
                    unsigned int size_dpi, unsigned int start_stop_dpi 
                   ) { 
 
  // Local lpc transaction 
  lpc_trans lt_local; 
  // Local checker  
  checker* checker_m; 
 
  // Prepare transaction for the checker 
  lt_local.set_originator(originator::create("lpc_mon")); 
  lt_local.set_initial_delay(0); 
  lt_local.set_cmd(sr::cmd_t(cmd_dpi)); 
  lt_local.set_addr_space(sr::addr_space_t(aspace_dpi));  
  lt_local.set_dma(false);  
  lt_local.set_addr(addr_dpi);   
  lt_local.set_data(data_dpi); 
  lt_local.set_sync(lpc::sync_t(sync_dpi)); 
  lt_local.set_sync_cnt(scnt_dpi); 
  lt_local.set_sequence_num(seq_num_dpi); 
  lt_local.set_tkind(trans::tkind_t(trans_type_dpi)); 
  lt_local.set_size(lpc::size_t(size_dpi)); 
  lt_local.set_start_stop(lpc::start_stop_t(start_stop_dpi)); 
 
  // retrieve the checker object from the static table 
  checker_m = checker::get_checker_object("CHECKER1"); 
  sr_assertm(checker_m, "Checker must be set!"); 
 
  // send transaction to the checker  
  checker_m->check(&lt_local); 
   
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Above code snippets explain how to connect a SystemVerilog module instance with a SystemC 
module (C++ object). In similar fashion, connections are made on the host bus side. 
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4.3.3 Reuse of low level Verilog BFMs/Monitors 

Apart from simulation speed improvement, the other advantages of developing BFMs and 
monitors in SystemVerilog are: 
 

(1) The low level verification IP like BFMs and monitors developed in Verilog for simple   
block level test cases could be reused. 

(2) As SystemVerilog integrates seamlessly into Verilog, the SystemVerilog – BFMs could 
be developed first and provide a primitive interface for directed stimulus. The random 
stimulus could be added later via SystemC. Work is not done twice as the BFMs are 
reused for the SystemC / C++ testbench. 

 
While porting SystemC BFMs to SystemVerilog, this reuse philosophy was utilized. Low level 
Verilog tasks for driving the host bus were available. The SystemVerilog host bus BFM was 
developed on top of these tasks, thus reusing the tasks. All the transactions received from 
SystemC side are first queued in the SystemVerilog host bus BFM. Then the main polling thread 
calls an appropriate low level task to apply the transaction over the host bus. The queue 
decouples the time consuming part of the BFM from the DPI interface. Hence the DPI calls on 
the SystemC side (exec interface) are simple non-blocking function calls. No special 
synchronization of simulators is required. Figure 4.4 explains the interfacing of SystemVerilog 
BFM and the higher layers of SystemC verification environment. 
  
                

 
 

Figure 4.4 Reuse of low level Verilog BFM tasks 
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. . .  
// Transaction polling thread 
initial begin 
  while(1) begin 
    @ (posedge mb_clk or mb_reset); 
    if (mb_reset) begin 
    end 
    else begin 
      if (GeodeLink_trans_queue.size() != 0) begin 
         
        // get the next transaction from the queue  
        mt_curr = GeodeLink_trans_queue.pop_front(); 
 
        mb_asmi = mt_curr.get_asmi(); 
        mb_err  = mt_curr.get_mb_error(); 
     
   // call appropriate low level task to execute the transaction 
        case (mt_curr.get_rqst_type()) 
   mb_coh_read: begin 
          mem_read(mt_curr.get_rqst_type(), mt_curr.get_rqst_ad(),  
                   mt_curr.get_rqst_sz());   
        end 
   mb_non_coh_read: begin 
          mem_read(mt_curr.get_rqst_type(), mt_curr.get_rqst_ad(),  
                   mt_curr.get_rqst_sz());   
        end 
. . . 
. . .  
        endcase 
      end // if (GeodeLink_trans_queue.size() != 0) 
    end // else: !if(mb_reset) 
  end // while (1) 
end // initial begin 

The following code snippet demonstrates this low level Verilog BFM reuse: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3.4 Implementation challenges 

The low level Verilog BFMs can not be directly reused without any modifications due to 
following reasons: 
 

(1) Verilog features like ‘assign’ statements, always blocks, modules are not allowed within 
SystemVerilog program blocks. 

(2) SystemVerilog high level language features like classes, associative arrays and queues 
are allowed only within program blocks. 

 
Another major implementation challenge faced is - Synopsys support for various SystemVerilog 
features. Not all SystemVerilog language features were supported by Synopsys VCS at the time 
of implementing this example. For example, features like operator overloading, associative array 
with user defined type keys, passing of unpacked structures through DPI, etc. were not 
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supported. This made the porting of SystemC BFMs and monitors to SystemVerilog difficult. 
With some workarounds, these problems could be overcome. 
 
4.3.5 Implementation using VCS-TLI 

For the sake of completeness, above concept was also implemented using the latest feature of 
Synopsys VCS called as VCS-TLI (Transaction Level Interface between SystemVerilog and 
SystemC). But since TLI is built on the top of DPI, the simulation performance achieved using 
TLI was same as in DPI approach.  In our case, DPI was more attractive because being a part of 
SystemVerilog standard it provided more portability and tool independence. Moreover, VCS-
TLI was not officially released at the time of implementing this example. This section gives a 
brief introduction of VCS-TLI.  
 
VCS-TLI is built on the top of DPI. It hides the DPI from the user and makes things easier for 
the user who wants to connect SystemVerilog and SystemC modules at transaction level. Some 
of the manual work, which was described in the previous chapter, is reduced by using VCS-TLI 
feature. It acts as a wrapper for DPI and automatically generates SystemC and SystemVerilog 
source codes for the TLI adapters. 
 
TLI enables the user to: 
 

• Call interface methods of SystemC interfaces from SystemVerilog 
• Call tasks or functions of SystemVerilog interfaces from SystemC 

 
Methods/tasks can be blocking as well as non-blocking. Blocking implies that the call may not 
return immediately. The caller's execution is resumed exactly at the simulation time when the 
callee returns, so a blocking call consumes the same amount of time in both simulator domains. 
Non-blocking calls always return immediately. VCS-TLI also helps in synchronizing the two 
simulators in case of blocking calls, which is not possible with DPI. But for simple non-blocking 
function calls between the two language domains, DPI should suffice.  
 
The use model of the transaction level interface consists of defining the interface by means of an 
interface definition file, calling a code generator to create the TLI adapters for each domain, and 
finally instantiation and binding of the adapters. 
 
Figure 4.5 illustrates how the VCS-TLI works for the case of ‘SystemVerilog calling SystemC 
interface functions’. It hides the DPI from user and uses it as an underlying mechanism for data 
transfer between the two language domains. The automatically generated wrappers/adapters 
forward call to SystemC interface method and take care of synchronization between SystemC 
and SystemVerilog. 
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Figure 4.5 VCS-TLI usage model (SV calling SC) 

 
5.0 Comparison Results: 
5.1 Effect of different simulation run lengths 

In this section, the approaches are compared for different simulation run lengths. The transaction 
count starts at 10 and then it is increased from 50 to 1600, doubling the number of transactions in 
every simulation. The UNIX/Linux ‘time’ command is used for measuring CPU time. The 
simulation times (CPU time) are noted for all the approaches and the trends are plotted as 
follows: 
 
5.1.1 Average CPU time (in sec) Vs Number of transactions 
 

Transaction 
          Count 

 
Approaches 

10 50 100 200 400 800 1600 

PLI Cosim 6.43  10.39  15.42 24.20 43.09 80.48 161.83 
DKI 4.97 8.38 12.92 20.38 36.82 68.95 140.05 
DPI 5.52 7.92 10.98 15.81 27.37 49.89 101.03 

 

Table 5.1 Average CPU time (in sec) Vs Number of transactions 

SystemVerilog 
TLI adapter 

SystemC TLI 
adapter

SystemVerilog 
module calling 

SystemC function 

SystemC 
interface 

DPI

SystemVerilog SystemC 

SystemC 
module 

implementing 
the function 
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Figure 5.1 Graph of Average CPU time (in sec) Vs Number of transactions 

 
In the above graph, it can be seen that the time required for co-simulations using the DKI and 
DPI is always less than the PLI based co-simulation, even if the transaction count is increased. 
This justifies the advantage of DKI and DPI based co-simulation strategies. 
   
From the above data, the relative performance improvement of DPI approach can be analyzed by 
calculating the percentage speed increase of the approaches over PLI based co-simulation. 
 
5.1.2 Percentage speed increase over PLI-based co-simulation 
 

Transaction 
          Count 

 
Approaches 

10 50 100 200 400 800 1600 

DPI 15.21% 31.81% 41.00% 53.63% 56.26% 57.53% 58.16% 
 

Table 5.2 Percentage speed increase over PLI-based co-simulation 
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Figure 5.2 Percentage speed increase over PLI-based co-simulation 

 
From the above graph, it can be observed that the relative speed improvement stabilizes roughly 
after 200 transactions. The percentage speed improvement over PLI-based co-simulation is fairly 
constant after this point. The changing nature of the curves during the ‘zoomed-in’ initial phase 
can be attributed to the initialization activities taking place during the co-simulation program 
execution, e.g. loading of runtime libraries.    
 
6.0 Conclusions  
The main objective of this paper was to present an efficient testbench architecture, which 
improves simulation performance. To justify the concepts, the approaches were tried out on real 
world SoC design blocks. The results achieved illustrate how this test bench architecture 
significantly improves co-simulation performance and the overall verification productivity. 
 
In order to verify huge and complex System-On-Chip designs within the available timeframe, we 
need a high level verification language like SystemC. But verification of a Verilog design with a 
SystemC environment comes with an inherent problem of slow co-simulation. The legacy 
SystemC-Verilog co-simulation interface at AMD was Verilog PLI based which slowed down 
the overall simulation speed. This paper presented the ways to circumvent this problem.  
 
The first probable solution presented was to replace the PLI-based co-simulation interface with 
an interface, which does not have any PLI overhead. The VCS Direct Kernel Interface (DKI) – a 
SystemC-HDL co-simulation interface from Synopsys Inc. could be the solution. 
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The second approach was to raise the interface between SystemC and SystemVerilog to a higher 
abstraction level. By adopting this approach, overall simulation speed increases because the 
slower signal level SystemC-Verilog data exchange gets replaced by a faster transaction level 
data exchange. To prove this concept, the existing SystemC BFMs and monitors were first 
ported to SystemVerilog, which were then connected with the upper layers of existing SystemC 
verification environment by SystemVerilog Direct Programming Interface (DPI). It was also 
shown how low level verification components could be reused, which is another step towards 
methodology improvement.  
 
The paper also introduced the new Synopsys VCS feature called Transaction Level Interface 
(TLI). The TLI is built on the top of DPI and essentially hides the DPI from the user. The 
advantage it provides over DPI is - some reduction of manual effort. It automatically generates 
the adapters required for connecting a SystemVerilog module instance with a SystemC module. 
  
Finally, all the approaches were compared on the basis of simulation time gain for different 
simulation run lengths. The decision to choose any approach is governed by several factors. 
There is an apparent tradeoff between performance and development effort. Legacy testbench 
structure and the overall existing flow also play a major role in making this informed decision.    
 
To sum up, this paper demonstrated how we could gain from SystemC as well as SystemVerilog 
by making a proper language choice for a given abstraction level within the test bench 
architecture. Embracing just one language or technology may not be very beneficial. An 
integrated environment leveraging the advantages of both SystemC and SystemVerilog can be 
more effective. 
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